
iov. z. 199,7 4:291_t_ STP_JFORD UtIIV. SPO SATELLITE OFC q,,j, ,.., .

/ c/_- _7..--
NA$_---_- 113004 /z_ it...,/; J ,-..-

i_._I..., i;>

Final Report /.._) "7-'--

Development of the Tensoral Computer Language

Grant #NCC2 899

Subm_ed to:

RPCC
NASA Ames Research Center

Submitted bY:

Stanford University

Department of Mechanical Engineering
Thermosciences Division

Principal Inve_gator:

Joel Ferziger

Associate Priacipal Investigator:

Eliot Dresselhaus

For tlve period;

January I, 1995 through December 31, 1996

lot/ 2 0

C,,7.5m.
go A.]

1 ":_ 2
I a,,_l

Summary

Advanced computer simulations in science and engineering almost universally require the effi-

cient manipulation of huge numerical databases. Such manipulations apply generic mathematical

operations _ typically calculus and statistics E to large arrays of non-generically representecl nu-
metrical data. Conventional codes to realize these generic operations must reflect the structure of

the particular data they operate on, the numerical methods they employ, and the computer sys-

tents they execute upon. Hence, conventional codes -- especially those seeking high performance

-- are highly non-generic. In particular:

To cope with large scientific databases, data must be managed. For example, a data manager

may split a large database into pieces small enough to be processed in a single processor's

main memory or may spread the data over many processors. Data management issues alone

add much complexity to database manipulation and are almost always dependent on the

specific computer system and input/output architecture being used.

Also,the numericalcoding ofmathematical operationsisstronglydependent on both how

data isnmnaged and thespecificsofhow thisdataisused torepresenta given quantity.For

example, compu_ng a derivativeinvolvesboth having thecorrectdata valuesin memory

at one time and employing a numerical method which combines thesevalues to form a

numerical derivative.

The research scientist or engineer wishing to perform large-scale simulations or to extract useful

informationfrom existingdatabasesisrequired tohave expertisein thedetailsof the particular

database,the numericalmethods, and thecomputer architecturetobe used. This poses asignifi-

cantpracticalbarriertotheuse ofsimulationdata.

This goalofthisresearchwas todevelopment a high-levelcomputer language E calledTen-

soralm designed toremove thisbarrier.The Tensorallanguage providesa framework in which

efficientgenericdatamanipulationscan be easilycoded and implemented:

Tensoral is genera/. The fundamental objects in Tensoral represent tensor fields and the

operators that act on them. The numerical implementation of these tensors and operators is

completely and flexibly programmable. New mathematical constructs and operators can be

easily added to the TensoraI system.

Tensoral is compatible with existing languages. Tensoral tensor operations coexist in a nat-

ural way with a host language, which may be any sufficiently powerfttl computer language

such as Fortran, C, or Vectoral.

Tensoral is very-high-lez, el. Tensor operations in Tensoral typically act on entire databases (i.e.

arrays) at one time and may, therefore, correspond to many lines of code in a conventional

language.

Tensoral ise_c/ent.Tensoralisa compiled language.Database manipulations are simpli-

fied,optimizedand scheduledby thecompiler eventuallyresultinginefficientmachine code

toimplement them.

1 Introduction.

Many computer simulations in science and industry --/or example, in computational fluid dy-

namics, in geophysical modeling, in protein and drug design, in computational electromagnetics

m involve the manipulation of huge quantifies of numerical data. Databases associated with
these simulations are often so large (consider the roughly 10° bytes needed for a single variable at

a single time on a 512 x 512 x 512 grid) as to make even relatively simple analysis and graphical
visualizations of them unwieldy E even on the largest of current supercomputers. The numerical

methods of such analysis and simulation codes are significantly complicated by the data man-

agement needs of large data-sets and by the need for high-performance on increasingly complex

computer architectures.
For such purely technical reasons much useful numerical data becomes underutilized by the

scientific and industrial communities. Databases, once produced, are most likely analyzed by only

a single research team (those who authored the simulation), at a single site (where the simulation
was developed), and born at most a few perspectives (usually only from those most familiar to the

simulaUon's authors). Since future scientific simulations and experiments will produce even larger

datasets, involve more complex problems, and be performed on more complex supercomputers

(for example, o_es having many independent processors) data management issues will become

increasingly di_cult.

The difficulties of working with and sharing such large scientific datasets are well known to
the NASA Ames and Stanford Center for Turbulence Research (CTR) communities. Over the

years CTR and Ames scientists have developed many techniques for genera_ng and analyzing

large flmd dynamics databases. Part of the CTR charter includes making this data available to the

fluid dynamics cozfi.munity. Therefore CTR has often been faced with the difficulties of sharing

large databases and the simulation necessary to analyze them.

Motivated by the need to more effectively share data and simulation technology, a program

was launched to develop a database and post-processing facility. Such a facility required a simple

technique by which generic data manipulations could be applied to a broad range of n_nerical
databases. Thus, the Tensoral language -- in which these manipulations may be coded and im-

plemented -- was born.

After several years of prelimina_ development a prototype compiler for the Tensoral lan-

guage was implemented. This prototype system performed efficient and flex_le analysis of tur-

bulence simulation data. The goal of this research was to turn the promising ideas of prototype

system E whose use was essentially limited to analysis of turbulence databases-- into a generally

usableproductionsystem.

Thisreportisorganized asfollows.Insection2 we definetheproblem athand: specifically,we

definethe relevantmathematical operationsofdatabase processing(section2.1)and characterize

the numericaldataon which thesedatabaseoperationsaretobe performed (section2.2).ALso,we

descn'bethecurrantstateofdatabaseprocessingatCTR (section2.3)by givinga specificexample

of how currentpost-processingcodes arewritten.Having definedthe problem insection2,we

outlL_eitssolutionin section3.We introducetheTensorallanguage inwhich thepost-processing

calculusiscoded and descn_oehow the Tensoral compiler transformshigh-levelmathematical

database operationsintoeft/dentmachine code code toperform them. We conclude (section4)by

describingtheaccomplishments and thecm-rentstatusoftheproject.

,_T_r..-_],_,t, Uf+!V. ,-:;-,,, !_-_,_ll-..I.I IIb i_,_. .. ,i + C'r_ • +'.':.
. .,_ .

2 The problem: generic calculus on non-generic databases.

Most important quantities in scientLfic simulations and databases are either tensor fields or are

closely related to them. For example, in fluid dyrkamics simulations one evolves the Navier-Stokes

equation to produce a velocity vector field t_(_, t). In fusion or electromagnetics simulations one

evolves Maxwell's equations for the magnetic and electric vector fields i_(_, l) and/_(i, t). Other

sLmulation evolve other differential equations to produce other numerical tensor fields.

2.1 Genetic calculus.

Much ofwhat has been learnedabout thebehavior ofthesegeneralequations(i.e.Navier-Stokes

and Maxwell) isphrased not intermsofthebasicquantitiestheyevolve(i.e.thevelocityfieldt7or

magnetic fieldB) but interms ofquantifiesderivedf_om them.Importantquantifiesderived from

thevelocity_ influiddynamics indude,

•thevorticityvectorfield,_(_,f)= V x _(_,t),

•thepressurescalarp(_,t)and itsgradientVp,
• the strain rate tensor, S =(Vti+ V_)/2,

• the mean velocity (u+) profiles,
• theReynoldsstresstensor/?._j---(u¢(z-')ui(z"}).

•thepressurestraincorrelation(pS;j),

The common thread in all of the simulations mentioned here is the desire to perform calculus

and statistics -- specifically, derivatives (curl, divergence, et al.), integrals, inverting the Laplace

operator _,2, averages, correlations, probabi/ity d/stribut/o_, coarse grair_g, etc -- a/] on numer-

ical data. Also, since the numerical data in question were generated using a particular (i.e. non-

generic) numerica_ scheme for differentiation, integration, averaging, etc., consistency requires

that these operations always be performed using this same scheme. Thus, the numerical imple-

mentation of calculus and statistics is certain to be non-generic.

2.2 Non-generic simulations and databases.

Although the mathematical operations we seek to perform are generic, the data we seek to per-

form them on aze not. For example, many families of fluids simulations and databases have been

developed by members of the research community at NASA, CTR and elsewhere. These simu-

lations represent solutions to either the incompress{ble or compresm"ole Navier--Stokes equations

for various flow geometries. Although these datasets have resulted from roughly the same under-

lying evolution equations, differences in boundary conditions, Reynolds number, and other flow

parameters completely change how these simulations are performed. Underlying numerical dis-

similarities this sort make it particularly difficult to post-process databases: programs to calculate,
for example, mean velocity profiles or vorticity will be quite different for different simulations.

In particular:

+ Some simulations use orthogonal .ftmct/ons ('Fourier, Chebyshev,]acobi, etc.) to represent

tensor Fields. Derivatives become algebraic operations (in transform space), and integrals
and averages are performed using Gaussian integration.

Other simulationsrepresentfieldsatcertaingridpointsand calculatederivativesusingfinite

differencemethods. Such simulationsareoftenseti.ncomplex geometriesand grids.

Various simulations of the same physical processes may use different fundamental variables.

For example, some fluids simulations evolve the velocity field; others evolve its curl, the

vorticityfield.

The simulations developed at NASA Ames and CTR are pex#ormeci on several different

super-computers (IBM SF2, Cray C90, Intel Paragon, Thinking Machines CM-5). These vaz-

ious architectures encourage the user -- for performance masons -- to use machine-specific

data management techniques (such as using the "Solid State Disk" (SSD) on the C.ray, or

spreading a dataset over many processors on the multi-processors and using node-local

disks for temporary storage). Also, again for performance reasons, one is led to use machine-

specific optimized Fourier transforms, Laplace inverters, and linear algebra routines. Fur-
thermore, databases retain some degree of machine-specificity even at a binary level (e.g.

machine bhnary representation, floating point format, file-structut/ng, etc.).

2.3 Cu.went post-processing.

Currently all post-processing of turbulence data is done "by hand." That is, for each simulation

and for each desired quantity an author must either add the required code to an existing post-

processor or dewlop a specific new post-processor, perhaps tksing an exis_ng one as a model. [f

the databases in question were small and simple, either of these options would be straightforward.

For the reasons discussed above both of these options involve significant effort and complications.

A simple explicit fluid-dynamic example will illustrate these complications. Suppose we de-

sire to calculate the pressure p(z-') given a velocity field snapshot _Ik, ¢), output of a Fourier space

isotropic turbulence simulation (the simplest of our databases). What follows is a recipe for in-

verting the Poisson equation V2p = - _,_j aj _.a,u#.

,,Read in_7(_)m _,-/_yplanesand calculatenecessary3/derivativesinwave space.

• Fou_,'iertransformthesederivativestrvm wave I/spacetophysicalIIspace.ThisistheRrstof
sub-transfomnstepsthatmake up afullthree-dimensionalFouriertransform.

• Read indataink,-/c_planes,stillinwave space,and calculatenecessaryz and ..-derivatives.

• Fouriertransformboth z and .-derivativesintophysicalspace.At thispointallof therequired

velocityderivativesareinphysicalspace.

• Form thesourceterm_# a#u,Au#inphysicalspace.

• T.ra.n.sformsourceterm,now funycalculated,backintofullwave spaceand invertX7_.

• T.ra_formresultbacktofullphysicalspace,againusingtwopassesthroughthedatabase(onein_-y

planes,theotherinz-zplanes).

Much of the complexityofthisexample stems from thefactthatthecomplete velocityfieldistoo

largeto fitintoeven a super-computer'scentralmemory. Thus, thedatamust be splitinto"pen°

ells"or "planes"ofone or two dimensionaldata and broughtintocorememory and processedin

smallpieces.In othersituationseven more stepsmust be takentoperform a similarcomputation.

4

MK)"-.".Ztj. 1 _'J; • .4 :L_L"%-!M '-, ! _I"_F i L_c'lj LI _ i ',,,' , "z,l'-'i_ I L,H FLLL i ! ._ , '_ I _ _ ...I JL t_._._i T_ .

Considering it_e above example, one can see that'a post-processor which computes many quan-

rifles can become a quite an involved code in its own right. In fact, for many simulations at NASA,
post-processing codes are more complex and difficult to maintain than the simulation codes them-
selves.

3 The solution: the Tensoral language.

The fundamental goal of the Tensoral language is to eliminate the burden of coding such complex
data manipulations from the user of the data. Use of Tensora] hides the details of the data, it's

underlying numerical methods, and the computer system from the user of the data.
Tensoral is a _,ry-high-level object-orientedcomputer language designed to ease the ef_cient nu-

merical computation and manipulation of tensor fields (i.e. those arising in fluid dynamics, elec-
tromagnetics, etc.).

• Tensoral is a v_y-high-tevcl language. Support for arithmetic and calculus on tensor fields

is an integral part of the language. Tensor operations generally act on entire tensor fields

(usually represented by large arrays of numbers), and tensor notation (mimicking standard

mathematic_tl tensor notatiort) is provided. Tensor calculus and statistics are also built into

the language: Tensoral supports differentiation, integration, inversion of Laplacians, gra-

dient, averaging, correlations, etc. A single line of Tensoral consisting oL for example, an

average, a derivative and an addition corresponds to many lines of code in a traditional

computer language.

• Tensoral is an object-oriented computei language: objects (tensors) and operations on them

(operators) are abstract;, the implementation of tensors and operators is separated from their

use. Exactly how tensors are represented on a digital computer is fle:dbly and generally

programmable. Thus, a tensor may be represented on a Rxed grid or a variable grid; it
may be represented in various coordinate systems; it may be stored partially in primary

storage (e.g. memory), partially stored on secondary storage (e.g. disk); tensors may be

spread across the many processors of a multi-processor. Operations involving _sors are

also completely programmable: for example, different tensor representations imply different

techniques for computing derivatives and other calculus operations. This object-oriented

approach provides the framework in which database and simulation authors can provide
objects (i.e. Tensoral tensors and operators) to database users.

• Use of Tensoral is compatible with existing computer languages. Tensoral variables and state-

ments can freely exist inside another computer language such as Fortran or C or Vectora].
Tensoral code co-exists with the host language. As much as poss_le of the syntax and se-

mantics of the host language (i.e. declaration syntax, variable scoping rules, statements,

syntax, etc.) are preserved by Tensoral. Thus, Tensoral users are not forced to learn another

complete set of computer language rules. Instead they must learn a much smaller set of

rules: how to introduce TensoraJ variables, how to operate on them and how to reference

Tensoral variables from host language code.

• Tensoral is designed to produce highly efficient programs. The Tensoral system is built

around a compiler, programs are compiled into lower-level host language programs and

5

III _ _ _ _ .. _1''--2"_1"_[_'1 -_ ,, .,;._. '--:_"11 !:'H LLLL_ I_ ,_ ii 'r',.,v . _,. ± __,, _ _T_II_-_, h L!r:]_'.'./.. _. r ii. i i I, ":. _ 'o',:.:

eventually into machine code. The host code generated by the Tensorai compiler is nearly

as efficient as optimized code generated by hand.

3.1 Tensoral by example.

The best way to introduce a new computer language or software system is by example. To wit,

suppose a databaseuserdesirestostudy theevolutionofthemean pressurestrainterm (pS_i)for

a time-seriesofi$otropicturbulencevelocityfielddatabases(callthem run1, run2, ...).Such a

user has alreadyconsultedwith an isotropicturbulenceauthor,who has provided the databases

zunX, run2as well as the £so (shortfor "isotropic")tensorenvironment for use with the

Tensoral system.Afterconsultingwith the author'sdocumenta_on, our hypotheticaluserenters

the followingTeasoralprogram intoa fileps. clc on her computer.

Line1 iso main (inc argc, char * argv[]) (

L/he2 iso (velocity} u. {u, rank 2} A, (u, rank 2} S, (u, rank 0} p;

Line3 i-,',tf;

L_le4 for (f = i; f < argo; f++) (

Line5 u -- <argv[f]>;

Line6 A_ij = u_i,j;

Line7 S_ij = 1/2 (A_ij + A_ji);

Line8 l) = -unlaplacian {A_ij A ji) ;

Line9 printf ('%g ", ave_xyz (p S_ij)};

LineI0)

Line I1)

Inthisexample, C isthehostlanguage.Line IdeclaresaC _ functionmain touse iso tensors.

iso isused with thisC code to introduceisotropicturbulencetensors.Lines 2 and 3 declare

variables:f istobe a standardC integervariable,u istobe an iso velocityfield,A tobe justlike

u but having rank 2,etc.Line4 loops over the filearguments given on theUnix command line.

Line 5 reads ina velocityfieldintothe variableu. The next threelinescompute pressurep and

strains.Line9 usestheC standardprintf functiontoprintout allninecomponents of themean

pressure strain.The informationprovided by the databaseauthor as partof the the £so tensor

environment dellneshow toread the velocityfield(line5),possiblyincludingmass storageaccess

and transfer,how toperform derivatives(line6),how toinverttheLaplacianoperator0ine 8),etc.

Itshould be emphasized herethattheabove program isa correctand functionalinput filefor

thecurrentprototypeTensoralcompiler.To executethisprogram theuserwould justcompile and

run her program ps. tlc using theTensoral compiler.

As isdear from thisexample, use of the TensoraJ language has insulatedthe user from the

myriad internaldetailsof the simulationsand databases. (Recallthe descriptionin section2.3

of what isnecessaryto compute pressure forisotropicturbulencesimulations,)Also, one cart

see thata Tensoral program need not be changed much to analyzedatabasesoriginatingfrom

differentsimulations-- aslongasTensoral authorshave provided descriptionsof such databases

(such as iso above).

3.2 Tensoral for datable authors.

It is clear from _e previous example that database authors must have a more difficult job than

databaseusers.They must teachtheTensoralcompilerhaw togeneratehostcode torealizetensors

and mathematicaL operations on them. Such authors must have a detailed knowledge of both the

numerical methods they employ and of the model of computation that the Tensoral compiler

presents to database authors, In this section we give a brief account of what database authors

must know about the Tensoral system.

FigureI:A blockd/agram ofTensor_lcompileruse.

Figure 1 illustzatesthe processinwhich Tensoralprograms arecompiled intoefficientpost-

processorstoperform theintended task.Following figurei,theTensoralcompiler

• starts with a Tensoralprogram suppliedby theend databaseuser(e.g.ps. tlc),

• determ/nes the requirednume6c_] methods and data manage.merittechrdquesin _he form

ofa Tensoralbac.k-e_(hereclc. iso),

• uses theinformationin thisback-end tocontrolthegenerationof hostlanguage code (here

ps. c) toperform thedesiredmathematical operations,

• callsthehostlanguagecompilertogeneratemachinelanguageoutput(here,ps).

• This compiled fileps can thenbe executed orcan be integratedintoorcalledas a subroutine

from existing code.

The details of this back-end language are beyond the scope of this document. Suffice it to say

that the current prototype isotropic turbulence back-end is sufficient to generate efficient compi-

lations of the above example code and many other test programs.

4 Project accomplishments and future directions.

The project started with improvements and extensions to the prototype compiler. As of by mid-

year 1995 we fixed many bugs and had written much of a new back-end for the turbulent channel

_ _ ' .->_ .,-,,--,_ 4:-_.,_,_ __e, TN,_F,_-_F,r_I"ll\:.

b

'-;F'_h '--;ATEUL I TE ' _F':- t _', ,---c" F, [_-,

code.The experienceofwritinga new back-end was most valuableinhighlightingthe weaknesses

inmodularity and coherencyofthebasiclanguage design.

At thispointtheprojectteam decided thattheTensozalback-end language needed a complete

redesign.In particular,itwas decided thatthe Lisp extensionlanguage used tocode back-ends

was tobe abandoned. By the end of1995 the new system was designed and itsimplementation

commenced.

In the new system, Tensoralw which adds tensorsyntax toCw would be implemented in

a new coherent and fullymodular computer language,calledE.E allowsforC tobe e_tem_edby

adding arbitrarysyntax and connecting thissyntax with arbitrarycode. E distillsthebasicideas

of Tensoral intoa coherent,modular, completely general,computer language. Such a generally

usefullanguage was thefundamental goalofthisresearchproject.

In 1996 the E compiler framework was designed and implemented. Any computer language

translateshigh-levelintolow-level.A powerful,and thereforeuseful,computer language linksa

powerful and ge_neraltranslationmechanism with powerful a_d e_clent low-levelcode. Before

the E translatorwas designed,thebase language iteventuallytranslatedintoneeded tO be de-

signed and coded. In traditionalC thisbase language isessentiallyprovided by the C runtime

h'brary;in E thisbase language isdefined by the E runtime h'bra.ry.This runfime librarypro-

rides thebasiclow-levelcode formanaging acomputer's memory, forhandling dynamic arrays,

forhandling input/output from devicesand network, forhandling multi-dimensionalarrays,for

handling syntacticadditions,etc.(Thislow-levellibrarycorrespondstotheLisp system embed-

ded in theTensoraJprototype.)

Interim Report

Development of the Tensoral Computer Language

Grant #NCC2 899

Submitted to:

HPCC
NASA Ames Research Center

Submitted by:

Stanford University

Department of Mechanical Engineering
Thermosciences Division

Principal Invesn'gator:

Joel Ferziger

Associate Principal Investigator:

Eliot Dresselhaus

For the period:

January I, 1995 through December 31, 1995

i_V. 20. 1997 " 4 :35PH"..........."" 'EIF'c:,_,,_I.... '-,ATELLITE OF,- I"_ --=. - F'.#Z'

Tensoral developments in 1995 fiscal year,

The Tensoral computer language and compiler, as it stood at the end of 1994, was novel and

functional -- capable of generating efficient CFD codes given very-high-level descriptions of the

computations to be performed. A user could quickly perform statistical operations, could take
derivatives, solve Laplace's equation, etc. simply by entering several lines of code in a computer-

ized mathematical notation. This compact tensor notation was trartslated by the compiler into the

many lines of C language code which realized it. Great pains were made to make this automati-

cally generated code efficient.
The 1994 Tensoral, however, was a proof of concept, riot a final product. For a new language

such as Tensoral to come into wide-spread use, it must more than improve on older technology;

the new must revolutionize the old. Witness that Fortran and C -- the dominant languages for

scientific and engineering computation for years now -- have yet to be dethroned by many fine

recent languages. Users will only move to new technology if a commitment to learn it will be well

rewarded by' tlme saved in using it. Design vision and dedication to quality were seen as essential

for Tensoral to mature from prototype to product.

In the prototype, many decisions were made to save time. The prototype language _ although
easy to program from a end-user's perspective -- was difficult to program on the lower-level.

The difficulties of coding Tensoral code generators (backends) was enough to dissuade even the

most experienced CFD programmers in the NASA Ames/Stanford community. Backends were

encoded by Lisp Frogran_ wkich generated C code and interfaced with the compiler's code gen-

erator. This approach, although it saved much development time since the Lisp runtime system,

data types, and interpreter could be inherited from a standard Lisp system, was suffident for a

research project but not for production language. There were separate languages seen by users

(tensors, calculus, statistics, etc.) and programmers ('Lisp and C). Tensoral B although perfectly

functional -- was not a coherent computer language. Furthermore, programming in Tensora] was
not modular:, it was not clear how common code could be shared between different backends.

Du_ng 1995 the faults of the prototype were defined and many were fixed. However, from

a backend progrmnmer's perspective the old language was fundamentally flawed. These f_nda-

mental flaws motivated a complete re-design of the Tensoral language. The new language distills
the successful ideas of Tensoral -- high-level computation using specialized notation _ into a

coherent and modular new language.

The end result of this design was the E language. E, as suggested by its name, aims to be a

• compact and elegant tool for extending C. E extensions to C spe_ both notation and computer

code corresponding to this notation. In the new system, Tensoral and its tensor notation and

CFD code generation would be implemented as a family of E extensions to C_ The E compiler itself

would also be implemented out of such extensicrns.

By the end of 1995 the design of the E language was complete and its implementation begun.

